Hubungan Dua Bundar : Kedudukan Dua Bundar Dan Tali Busur Sekutu

Salam Para Bintang

Kali ini kita akan membahas bahan ihwal bahan dasar untuk merencanakan diri di cobaan UTBK, Ujian Sekolah, Ujian Masuk Perguruan Tinggi Negeri lainnya. Materi ini merupakan sungguh timbul dalam aneka macam soal-soal cobaan yang diadakan apalgi mau masuk PTN. Jadi, sebelum kalian menyelesaikan soal-soal kedudukan dua bulat fungsi, maka pasti saja ketahui dahulu materinya ya. Oke !  


A. Kedudukan Dua Lingkaran

Kedudukan dua bulat meninjukkan bagaimana posisi dari bulat pertama dengan bulat kedua. Hubungan (kedudukan) dua bulat terdiri atas empat kemungkinan yaitu:

1. Tidak Berpotongan, tapi di luar sesamanya 

    Perhatikan gambar berikut!

Dari gambar di atas, berbincang bahwa lingkaran  dengan jari-jari  dan lingkaran dengan jari-jari , dimana  > . Misalkan d = jarak sentra lingkaran  dan 

            

           

Jadi, jika  maka lingkaran  dan  tidak berpotongan, tapi di luar sesamanya.


2. Bersinggungan di luar

    Perhatikan gambar berikut!








Dari gambar di atas diperoleh, jika  =  + , maka lingkaran   dan lingkaran saling bersentuhan . 


3. Lingkaran yang satu di dalam bulat lainnya.
     Kedudukan Lingkaran yang satu di dalam bulat yang lain terdiri atas 3 jenis yaitu:
  • Lingkaran pertama bersentuhan dengan bulat 2 di dalam
  • Lingkaran pertama  dengan bulat 2  sepusat
  • Lingkaran pertama tidak bersinggungan  dan tidak sepusat dengan bulat 2 
    Perhatikan gambar berikut!
Lingkaran pertama bersentuhan dengan bulat 2 di dalam















Dari gambar di atas diperoleh lingkaran  dengan jari-jari  dan lingkaran  dengan jari-jari   sehingga: 

                       
                          

Jadi, jika  maka lingkaran pertama bersentuhan dengan bulat 2 di dalam
.
 Perhatikan gambar berikut!
Lingkaran pertama tidak bersinggungan  dan tidak sepusat dengan bulat 2

Dari gambar di atas diperoleh lingkaran  dengan jari-jari  dan lingkaran  dengan jari-jari   sehingga: 

                       
                       
Jadi, jika  maka  Lingkaran pertama tidak bersinggungan  dan tidak sepusat dengan bulat 2

Perhatikan gambar berikut!
Lingkaran pertama  dengan bulat 2  sepusat

Dari gambar di atas diperoleh lingkaran  dengan jari-jari  dan lingkaran  dengan jari-jari   sehingga: 

                       
                       
Jadi, jika  maka Lingkaran pertama  dengan bulat 2  sepusat

4. Lingkaran berpotongan dengan lingkaran 

Perhatikan gambar berikut!


Dari gambar di atas diperoleh lingkaran  dengan jari-jari  dan lingkaran  dengan jari-jari   sehingga: 

                       

Gambar di atas, ditarik kesimpulan bahwa:
  •  dan 
  • AB merupakan tali busur sekutu
  • Sentral  membagi dua tegak lurus tali busur AB
  • garis tersebut merupakan garis kuasa
                       
Jadi, jika  maka Lingkaran pertama  berpotongan dengan  bulat 2

Ingat, dalam menyeleksi jarak antara sentra bulat yaitu  , maka penting dipahamai jarak dua titik  yaitu:



Untuk mengetahui klarifikasi di atas amati pola soal berikut:

Contoh 1:
Diketahui sentra lingkaran Kali ini kita akan membahas bahan ihwal bahan dasar untuk merencanakan diri di cobaan  Hubungan Dua Lingkaran : Kedudukan Dua Lingkaran dan Tali Busur Sekutu adalah (2, 6) dengan panjang jari-jari 2 cm. Sedangkan koordinat sentra lingkaran Kali ini kita akan membahas bahan ihwal bahan dasar untuk merencanakan diri di cobaan  Hubungan Dua Lingkaran : Kedudukan Dua Lingkaran dan Tali Busur Sekutu adalah (10, 0) dengan jari-jari 6 cm. Selidikilah kedudukan antara lingkaran Kali ini kita akan membahas bahan ihwal bahan dasar untuk merencanakan diri di cobaan  Hubungan Dua Lingkaran : Kedudukan Dua Lingkaran dan Tali Busur Sekutu dan lingkaran Kali ini kita akan membahas bahan ihwal bahan dasar untuk merencanakan diri di cobaan  Hubungan Dua Lingkaran : Kedudukan Dua Lingkaran dan Tali Busur Sekutu!

Pembahasan:
Dari soal sanggup dilihat apa saja yang dimengerti yaitu:
 = 2   dan sentra L1 merupakan (2,6)
 = 6  dan sentra L2 merupakan (10,0)

sehingga dengan menggunakan rancangan jarak dua titik, maka sanggup diputuskan jarak kedua titik sentra Lingkaran yakni d:


dan 
 

Berdasarkan perkiraan di atas, diperoleh kesimpulan 10 > 8 atau  

Jadi, jika  maka lingkaran  dan  tidak berpotongan, tapi di luar sesamanya (saling lepas)

Contoh 2:
Bagaimanakah kedudukan bulat x2 + y2 + 8x -4y – 5 = 0 dan bulat x2 + y2 + 4x – 2y – 11 = 0 ? 

Pembahasan: 
Dari persamaan L1 : x2 + y2 + 8x – 4y – 14 = 0 diperoleh sentra dan jari-jari bulat sebgai berikut: Pusat ( -4, 2) dan jari-jari = 5, dan dari persamaan L2 :  x2 + y2 + 4x – 2y – 11 = 0  diperoleh sentra dan jari-jari yakni : Pusat (-2,1) dan jari-jari 4

sehingga dengan menggunakan rancangan jarak dua titik, maka sanggup diputuskan jarak kedua titik sentra Lingkaran yakni d:



dan  sehingga: 
Berdasarkan perkiraan di atas, diperoleh kesimpulan :  atau  .

Jadi, jika  maka lingkaran pertama  berpotongan dengan  bulat 2


B. Tali Busur Sekutu
Tali busur bulat merupakan ruas garis dalam bulat yang menghubungkan 2 titik pada lingkaran. Untuk mengetahui tali busur sekutu, maka coba lihat gambar di bawah ini:


Dengan memperhatikan gambar di atas, maka garis AB merupakan tali busur sekutu dari bulat 1 dan bulat 2.

Jika diketahui:

maka persamaan tali busur sekutu AB adalah:

                         

Persamaan bulat yang lewat titik A dan B sanggup dinyatakan sebagai:

                              
atau

                                           
dimana m merupakan parameter

Untuk  mengetahui bahan tali busur lihat pola soalnya di sini:



Buat lebih berguna, kongsi:

Trending Kini: